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The expansion of the crack-tip craze in poly(methyl methacrylate) during quasi-static fatigue fracture is 
considered. The driving force is taken in the form proposed by the Crack layer model. It is evaluated on 
the basis of experimentally measured quantities of the craze length and craze width and the assumption 
of a uniform stress applied along the boundary of the crack-tip craze (Dugdale-Barenblatt model). 
Correlation of the rate of expansion and the corresponding driving force suggests that a power-type kinetic 
equation adequately describes the expansion of the crack-tip craze under the investigated loading conditions. 
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I N T R O D U C T I O N  

Mechanistic investigations of fatigue crack propagation 
(FCP) in a variety of engineering materials demonstrate 
that damage accumulation, within a zone adjacent to the 
crack tip, precedes slow crack growth. This zone is 
usually called a plastic zone 1, process zone 2'a, active 
zone 4, etc. It has been observed that for polymers damage 
constituting a process zone may be in the form of a single 
craze 5-a, multiple crazes 9-11, shear bands 12, a com- 
bination of both ~ 3 or homogeneous deformation 14. 

The specifics of such a fracture process is that damage 
activity within a process zone dissipates a substantial 
amount  of energy which in mechanical experiments is 
manifested by the dependence of conventional toughness 
parameters on damage evolution and crack deceleration. 

It therefore seems imperative that formulation of 
kinetic equations for crack-damage evolution would be 
the most desirable goal since damage plays an important 
role in the fracture behaviour of materials. This implies 
detailed information about the nature and kinetics of 
damage elements, their distribution and interaction, as 
well as their dependence on loading history. However, 
such a detailed characterization of damage seems unreal- 
istic at present because of problems encountared in both 
experimental and theoretical studies. 

Another approach to the problem, first introduced by 
Chudnovsky 4, is to treat the crack and its surrounding 
damage as a single macroscopic entity, namely, a crack 
layer (CL), and to employ principles of irreversible 
thermodynamics to model a fracture process. A schematic 
of a CL is shown in Figure la. The zone ahead of the 
crack tip where damage accumulates prior to crack 
growth is the active zone. The part of a CL complementary 
to the active zone is the inert zone. 

According to the CL model fracture propagation 
results from active zone movements i.e. translation and 
rotation as a rigid body, self-similar expansion and 
distortion. The rates of these movements are treated as 

thermodynamic fluxes. The corresponding forces are 
introduced within the framework of irreversible thermo- 
dynamics 4. 

In this report we attempt to describe the self-similar 
expansion of the crack-tip craze during rectilinear FCP 
in poly(methyl methacrylate) (PMMA). The force respon- 
sible for expansion is taken in the form proposed by 
the CL model 4. Its evaluation is based on experimentally 
measured quantities of the craze length and width and 
the assumption of a uniform stress along the boundary 
of the crack-tip craze. Thereafter, a power-type and 
Arrhenius exponential relationships between the rate of 
expansion and the driving force are confronted with the 
experimental data on the expansion rate of the crack-tip 
craze. 

EXPERIMENTAL 

In situ experimental observations suggest that FCP in 
high-molecular-weight PMMA is preceded by a single 
craze 5-s. A schematic of a crack-tip craze configuration 
is shown in Figure lb. 

The data on the rate of expansion of the crack-tip craze 
analysed in this study is that reported in ref. 15. Compact 
tension specimens of commercial-grade P MMA with 
dimensions 8 x 8 x 4mm are tested using a sinusoidal 
tensile load of frequency v = 2 Hz, load ratio R = 0.1 and 
temperature of 23°C. 

An optical method is used to take interference optical 
micrographs of the crack-tip region during the course of 
the fatigue loading. Analysis of the interference fringes 
yields the shape and size of crack-tip craze at desired 
phases of load history. Details of the experimental set-up 
and the method of analysis can be found elsewhere7'S' 16. 

Although it is possible to extract the shape of the craze 
by optical interferometry, the location of the craze tip 
and hence the craze length cannot be measured directly. 
It is obtained by extrapolating the experimental points 
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Figure 1 Schematics of (a) crack layer and (b) crack-tip craze 
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Figure 2 (a) Evolution of craze length la and (b) of craze width w 
with the energy release rate G 1 

of the craze shape at a particular configuration and using 
a Dugdale-Barenblatt model a 7,18. 

For a compact tension specimen the energy release 
rate G~ is calculated as: 

p2(2W+ l)2 F 2 
G 1 - t2 (W - l)3E 

where P is the applied load, W is the specimen width, l 
is the crack length, t is the specimen thickness and E is 
the Young's modulus of the material. The function F is a 
correction factor appropriate to the specimen geometry ~ 9. 

The evolution of the craze length l,, craze width w 
(Figure lb)  and their ratio w/l a as a function of G~ are 

shown in Figures 2 and 3, respectively. The data clearly 
demonstrate that the crack-tip craze undergoes transla- 
tion, expansion and distortion. Linear regression analyses 
of the data shown in Fioure 2 result in correlation 
coefficients of the order of 0.98. Thus, in the following, 
the dependence of w and I, on G1 is approximated by a 
straight line. 

The rate of expansion is defined as ~=½[f'(t)/V(O)],  
where f'(t) is the rate of increase of craze volume at time 
t and V(0) is its initial volume 4. The evolution of O plotted 
against the energy release rate G1 is shown in Fioure 4. 
It is worth noting here that k changes by almost five 
orders of magnitude. 

BACKGROUND 

The response of a large class of engineering materials to 
a stress concentrator induced by a crack is the formation 
of a damage zone (or a so-called process zone) in a narrow 
region around the crack tip 5-14'2°-24. During fracture 
propagation a damage zone may experience translation, 
rotation and deformation 25. 

Fracture mechanics approaches to FCP attempt to 
relate crack speed to some function of stress intensity 
factor K 1 2 6 - 2 8 ,  o r  the energy release rate J126-2s. This 
implies that fracture propagation can be described by 
one kinematic parameter, the crack length. Although 
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these models may well describe the particular data upon 
which they are formulated, they fail to describe crack 
deceleration observed in a number of materials 29-32. 
Evidently, conventional fracture mechanics models of 
FCP characterize the translation of a damage zone only. 

The phenomenological model of a CL describes a 
fracture process in terms of evolution of the damage 
zone 4. In its scope CL is defined as the system consisting 
of the main crack and its surrounding damage (Figure 
la). The part of a CL ahead of the crack tip is the active 
zone 4'33. Within this zone damage accumulates prior to 
crack advance. The part of a CL complementary to the 
active zone is the inert zone. In the case of PMMA 
examined in this paper, the active zone consists of the 
crack-tip craze (Figure Ib) and the inert zone of crazed 
material which remains on the fracture surface. 

The CL model envisions the rates of the elementary 
movements of the active zone as thermodynamic fluxes. 
The forces corresponding to the fluxes are introduced 
using the principles of thermodynamics of irreversible 
processes  4'34. 

Accordingly, the forces responsible for translation X t* 
and self-similar expansion X eXp are: 

x t r = j  1 - ? R  1 (1) 

X ~xp = M - ?R o (2) 

where J1 and M denote the energies available for 
active-zone translation and expansion, 7 is the specific 
energy of damage (a material constant) 3s-3~, and R~ and 
Ro are the resistance moments for active-zone translation 
and expansion and are expressed in terms of damage 
density and the geometry of the active zone 4. The 
products of ~ and R~, R o represent the energies required 
for translation and expansion, respectively. Thus, relations 
(1) and (2) express the energy barriers for translation and 
expansion of an active zone. 

As J1 approaches 7R~ in (1), the crack speed tends to 
infinity and corresponds to the transition to fast fracture, 
at which: 

J l c = ? R l c  (3) 

where J~c and Rxc are the energy release rate and 
the resistance moments for CL translation at critical 
propagation 4. 

For  an elastic solid under plane loading conditions, 
the energy release rates J1 and M in relations (1) and 
(2) are given by the following contour integrals3S'39: 

J' = fc (fn, - TkUk.,) ds (4) 
1 

M = fc  ( f x i n i -  TkUk,iXi) ds (5) 
2 

where C 1 and C 2 a r e  the contours of integration, f is the 
strain energy density, u k is the displacement vector, T k is 
the traction vector defined by the outward normal n i to C~ 
(C2). It is important to mention here that the contour 
C~ is taken around the crack tip while C2 encloses the 
entire crack (Figure 5a) 39. In addition J1 and M are not 
independent. For  a sharp crack of length 21 embedded 
into an infinite plate, M can be expressed as 4° M = 21J~. 
The dependence of M on J1 permits the evaluation of 
M (or Jx) when J1 (or M) is known. 
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Figure 5 (a) Paths of integration for M and Jl (see text for details). 
(b) Path of integration in a compact tension specimen 

ANALYSIS AND DISCUSSION 

Figure 5b presents the configuration of a compact tension 
specimen with the crack-tip craze. The J1 and M integrals 
(relations (4) and (5)) may be evaluated by utilizing their 
path independence property. Thus, for the closed contour 
F = F  1 --~S 1 + F 2 + S  2 we have: 

J r  = J r , - ( J s ,  + J r z + J s 2 ) = 0  

M r = Mr, - (Ms, + Mr2 + Ms2 ) = 0 

Here Jr ,  and Mr, can be looked upon as the contributions 
of the external load. Furthermore, because of symmetry 
of specimen and the applied load the contributions along 
the contours S 1 and S 2 are equal. Thus: 

Jr, = 2Js, + Jr2 (6) 

Mr, = 2Ms, + Mr~ (7) 

Knowledge of the stress distribution along the contours 
$1 (or $2) and 1~2 would permit evaluation of Jr ,  and 
Mr,.  Attempts have been made to calculate the stress 
distribution across the boundary of the crack-tip craze 
zone 41-43. These methods are based on experimentally 
measured displacements along the craze boundary. 

However, it is argued that stress distributions obtained 
on the basis of the calculated displacements may be 
incorrect 44. This is because the location of the craze tip 
and hence the displacements in the vicinity of the tip 
cannot be measured directly. 

Nevertheless, the Dugdale Barenblatt mode117'18 has 
been shown to provide a reasonable approximation of the 
crack-tip craze in PMMA 7,s. Therefore, in order to 
evaluate the energy release rates (equations (6) and (7)) 
we employ the Dugdale-Barenblatt  model to represent 
the distribution of stresses along the crack-tip craze 
boundary. According to this model, the stresses trans- 
mitted through the bulk material by the applied load and 
the stresses imposed by the crazed material produce 
singularities of the opposite sign at the crack tip. The 
singularities can be made to cancel each other by 
appropriate adjustment of the length of the nonlinear 
zone. This leads to Jr~ = Mr2 = 0. Furthermore, for small 
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crack opening, fn l  ds = x~n~ = 0. Thus, with the coordinate 
system at the crack tip equations (4) and (5) reduce to: 

f? J1 =2  ay(Ou2/OXl) dx x (8) 

M = 2 xlay(Ou2/Oxl) dx I (9) 

where ay is the stress applied across the crack-tip craze 
boundary. In the following Jr~ and Mr, are denoted by 
Ji  and M unless otherwise stated. Assuming that ay is 
constant across the boundary and approximating the 
craze by a triangle of height I. and base w, integration 
of (8) and (9) yields: 

J i  =arw (10) 

M= ½a,wla ( l l )  

where w is the separation distance of the crack tip (Figure 
Ib). From (1 O) and (11) we obtain the following relation- 
ship between M and Jl :  

M=½1j1 

which, for small extent of crazing (i.e. small-scale 
yielding), J1 = G1 = K I/E, gives: 

M=½1=Gx (12) 

It is important to note at this point that the numerical 
coefficient in equation (11) depends upon the coordinate 
system employed. Physically, the coordinate system 
should be taken at the centre of expansion of the craze. 
Such data, however, are unavailable. In this analysis we 
take the centre of expansion to be at the crack tip. 

Relation (12) expresses the active part of the expansional 
force (relation (2)). The resistive part yR 0 is approximated 
as follows4: 

7Ro=7(p)A (13) 

where (p )  (gmm -3) denotes the average density of the 
crazed material and A is the area of the crack-tip craze. 
The product ~(p) is calculated from the condition at 
critical propagation (equation (3)). Substituting for 
Rlc= (p)wc (ref. 4), where w c isthe width of the crack-tip 
craze at critical propagation, we obtain: 

(p)~,=dlc/W¢ (14) 

Furthermore, since the crack-tip craze is small compared 
to any other dimension of the specimen, small-scale 
yielding is assumed to prevail and J ig= G1¢, where G1¢ 
is the elastic critical energy release rate. Thus, from 
equations (12)-(14) we obtain the expansional force 
(relation (2)), i.e.: 

X ©xp =½1aG 1 - -  (Glc/Wc)A ( 1 5 )  

The evolution of X exp with the energy release rate G~ is 
shown in Figure 6. 

The experimental data on the rate of expansion 
(Figure 4) and the calculations of X =~p (Figure 6) are 
correlated next as an attempt to estimate their functional 
relationship. We restrict the analysis, however, to power 
and exponential relationships between ~ and X eXp, 
namely: 

~= B(X'~P) m (16) 

= C1 exp(-- C2 Xexp) (17) 

4 

Figure 6 
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Expansional driving force as a function of G, (equation (15)) 

6x10 -~" 

I 
2S 3OX10 

4 

3 

2 

1 

i 
-J  0 

-1 

-2 

-S 
-6 

Figure 7 

D ° 

o °° D 

D ° o 

I I I I I ! 
-5 -4 -3 

Log X exp 

Variation of iog(~) with log X exp (equation (16)) 

-2 

The phenomenological parameters in (16) and (17) are 
obtained from linear regression analysis. Note that (16) 
reduces to the well known Onsager's linear relationship 
when m= 1 and (17) is an Arrhenius-type exponential 
relationship with X =~p being the energy barrier for the 
process 4s. 

The straight line in Figure 7 represents the right-hand 
side of (16). The data points are measurements of the rate 
of expansion (Figure 4). The correlation coefficient and 
the slope of the line are 0.96 and 2.1, respectively. 

Craze growth is a rate-dependent irreversible process. 
The value of the slope, m=2.1, of the straight line in 
Figure 7 suggests that a simple Onsager relationship 
cannot describe the expansion of the crack-tip craze. It 
further implies that, under the particular loading con- 
ditions, the expansion of the craze in PMMA does not 
fall under the linear range of irreversible thermodynamics 
or the so-called first-order thermodynamics 46'~7. 

Moreover, it is worth mentioning that, on the basis of 
dimensional analysis, Barenblatt et al. 4s suggest that 
power-type kinetic relations are the result of lack of 
characteristic time of the process under consideration. 
However, in order to verify this statement in the case of 
expansion of a crack-tip craze, additional experimental 
work under various loading conditions is required. 

Application of relationship (17) should result in a 
straight line on the In ~ - X  e~v plane. The data shown in 
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F i g u r e  8, however,  indicate that  a single straight line 
canno t  provide an  adequate  descript ion of the range of 
the expans ion  rate analysed here. 

C O N C L U S I O N S  

The analysis presented above suggests that,  for the 
par t icular  loading  history investigated, a simple power 
kinetic equa t ion  adequate ly  describes the expansion of 
the crack-t ip craze in P M M A .  Addi t ional  experimental  
work,  under  var ious loading  histories, is needed in order 
to prove its validity and  l ighten the na ture  of the 
phenomenologica l  parameters .  
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